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Abstract 

 We have developed a generic prototype of a flood-forecasting model that is transferable 

to other locations around the Midwest to provide monitoring and forecasting flood potential at 

critical infrastructure points, such as bridges, where streamflow gauges are not available. Our 

efforts have centered around creating tools and protocols that would facilitate the implementation 

of the hydrological model in any of the four MATC states. The protocols include 1) a 

methodology to use existing regional data to determine the parameters in the runoff routing 

equation along the river network, 2) a methodology to determine the infiltration parameters that 

control rainfall-runoff transformation, and 3) a new set of equations that are more appropriate to 

simulate subsurface runoff from artificially drained landscapes (agricultural tiled landscapes). 

Also, a new web based graphical user interface has been developed to evaluate the model 

performance at multiple locations and to compare different model configurations. The interface 

also allows for intercomparing different hydrological models. 
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Chapter 1 Preliminaries: The Iowa Flood Center HLM hydrological model 

The Iowa Flood Center hydrological model, Hillslope-Link Model (HLM), is a 

distributed hillslope-scale rainfall-runoff model that partitions Iowa into over three million 

individual control volumes following the landscape decomposition outlined in Mantilla and 

Gupta (2005). The model is parsimonious, using ordinary differential equations to describe 

transport between adjacent control volumes. This characteristic reduces the computational 

resources needed by capturing the most essential features of the rainfall runoff transformation; it 

uses only a few parameters to obtain acceptable results. The model partitions the river network 

into river links (the portion of a river channel between two junctions of a river network) and the 

landscape into hillslopes (adjacent areas that drain into the links).  

 

  

(a) (b) 
Figure 1.1 (a) illustration of landscape decomposition into hillslopes and decomposition of the 
river network into channel link and (b) vertical soil profile and control volumes included in the 

hydrological model 
 

Mass conservation equations give rise to the system of coupled nonlinear ordinary 

differential equations that represent changes in the water storage in the hillslope surface (ssurf), 

top soil (stops), and deep soil (sdeeps) given by,  
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(1.1) 

(1.2) 

(1.3) 

Fluxes in, across, and out of the vertical hillslope control volumes include precipitation 

p(t), overland runoff qrunoff(t), infiltration into the topsoil qinfil, percolation from the topsoil into 

the deeper soils qpercol(t), baseflow into the channel qbaseflow(t), and evaporation from the ponded, 

topsoil, and deep soil layers (esurf(t), etops(t) and edeeps(t), respectively). The model assumes that 

percolation flux is a linear function of the amount of water stored at time t in the topsoil 

qpercol=kpercol·stops and that the baseflow is a linear function of the water stored in deep soil 

qbaseflow=kbaseflow·sdeeps. Overland runoff is a power function of the water stored on the hillslope 

surface (consistent with Manning’s equation) given by, 

 

 
(1.4) 

 

and infiltration is a nonlinear function of soil moisture content (stops/Ttops), where Ttops is the 

thickness of the topsoil layer (i.e., A-horizon) and a linear function of hydraulic head ssurf given 

by,  

 

 

(1.5)
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where kdry corresponds to the case of dry soil and, similarly to krunoff, kpercol, and kbaseflow can be 

interpreted as time constant (residence time) of the respective storage component. The hillslope 

area (ah) for the elements in the distributed model is, on average, 0.05 km², and link length (llink) 

is, on average, 400 m. Note that ah/(2llink) is the hillslope length. The exponent φ is a nonlinearity 

introduced by the change in the potential matric of the soil column as soil moisture changes with 

time. 

The HLM should be thought of as a modeling system rather than a single specific model. 

As the equations describing hillslope-scale processes are separated from the numerical solver, it 

is rather easy to explore different mathematical descriptions for water fluxes. For example, one 

can consider such simplifications as constant runoff coefficient or water transport velocity, or as 

an alternative, one can formulate these components based on the available physical 

characteristics.  

Water transport through the river network is nonlinear and governs how channel links 

propagate flow through the river network. Formulated in the context of a mass conservation 

equation developed by Gupta and Waymire (1998), it uses the water velocity parameterization 

given by Mantilla (2007) as, 

 

  (1.6) 
 

where qlink is the discharge from the link at time t, ah is the total hillslope area draining to the 

link, q1(t) and q2(t) are the incoming flows of the upstream tributaries, A is the upstream basin 

area, and λ1, λ2, and v0 are global parameters of the water velocity component of the model and 

are set to 0.2, -0.1, and 0.3, respectively. The model can capture the main features of the 

( )
1 2

1.670
1 2

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
(1 )

link link
h runoff surf baseflow deeps link

dq t v q t A a k s t k s t q t q t q t
dt l

λ λ

λ
 = + − + + −



4 

 

hydrographs including the maximum stage. We used the model in several studies (e.g., Ayalew 

et al. 2014; Cunha et al. 2012). We also discuss the model performance in Krajewski et al. 

(2017). The model is driven by radar-rainfall estimated from Level II NEXRAD data from seven 

WSR-88D weather radars covering the state of Iowa. The maps of rainfall intensity have spatial 

resolution of about 0.25 km2 and are updated every five minutes. The algorithms are described in 

Krajewski et al. (2013) and Seo and Krajewski (2015). 

An important aspect of our modeling approach is the avoidance of calibration. Instead, 

we rely on detailed information of the physical properties we model. This includes the 

topography, land use and land cover, soil properties, and details of the main forcing, i.e., 

precipitation.  Comparing simulation results to streamflow observations across Iowa validates the 

model formulation and parameterization. Therefore, we can view the model as data-intensive and 

calibration-free when used in forecast-mode. This, in turn, implies that with more detailed, 

relevant, and accurate data, including model states and physical domain characterization as well 

as the driving inputs, the model will work better. The model is fully automatic in the sense that 

no corrections are applied to the model as it moves forward in time once initial and boundary 

conditions are imposed.  

The model predicts the streamflow fluctuations associated with storm events over the 

catchment of interest using current observations of rainfall, and rainfall forecasts. The effect of 

storms on river ways is usually delayed ranging from days to weeks. Each point of interest in the 

landscape (bridge, culvert) can then be categorized according to the maximum warning time. The 

web interface will provide a visual tool to show when a particular location will be impacted, and 

it will provide an inundation map associated to the particular peak flow expected for that 
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location. Inundation maps are more effective tools in communicating the effects of flooding than 

crest stages at specific locations. 
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Chapter 2 Developing a data approach for the model parameterization, routing case 

The HLM model has an overall satisfactory performance, however, the set of parameters 

chosen for Iowa are not expected to be universal, and therefore the parameters to be used in other 

regions need to be calculated. Typically, parameters are obtained through model calibration 

(Devia et al., 2015; Moussa et al., 2009), which has issues. Calibration is usually done at the 

outlet of the basin, leaving potential uncertainties at the sub basins. Also, this procedure could 

lead to physical inconsistencies in the models. Considering this, we propose a data approach to 

obtain the parameters of the model at a regional scale. Unlike the classical calibration, the data 

approach obtains the parameters of the model from emerging patterns presented at the observed 

data (Sivapalan, 2018). In this case, we apply the approach to the parameters of the routing 

equation; however, it could be expanded to other parameters of the model. Our implementation 

starts extracting the parameters from the smallest basins with streamflow records in the region 

and ends extrapolating the same parameters for all the model domain.   

2.1 Methodology 

For the approach, we first select the base data set corresponding to 51 USGS streamflow 

gauges of basins with areas below 1300 km2 (red dots in Figure 2.1). The base data correspond to 

relatively small watersheds because their internal parameter variability is likely to diminish 

compared to basins with more area. From this data, we first run an experiment to obtain the 

dominant routing parameters. Then we explore two interpolation approaches to assign those 

parameters for the model domain. Finally, we evaluate the obtained results for all the stations 

(blue and red dots in Figure 2.1) 
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Figure 2.1 USGS streamflow stations used for the data-based approach (red) and for the 
validation of the results (blue). 

 

At the base data set, we evaluate nine combinations of the parameters that mostly control 

the model routing scheme 𝜆𝜆1 and 𝑣𝑣0. For this, we identify the rainfall-runoff events, and in each, 

we run a time-step runoff-controlled ODE hillslope model. In this setup of the model, we first 

make executions of the model with multiple RC values in a window of time of three hours (𝑑𝑑𝑡𝑡𝑚𝑚 

in figure 2.2a). Then, we continue running each realization without rainfall for a time window of 

six hours (𝑑𝑑𝑡𝑡𝑛𝑛 in figure 2.2a). At the end of the second window, we compare the total simulated 

and observed streamflow volumes and select the streamflow and initial conditions from the RC 

setup with a lower difference (end of step figure 2.2a). Then, we repeat this procedure until the 

end of the observed hydrograph (figure 2.2b and c). In figure 2.3 we present an example of the 

results obtained for an event at the USGS station 06600100. Using the described procedure, we 
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correct the simulated volume for each combination of 𝜆𝜆1and 𝑣𝑣𝑜𝑜 and for each watershed we select 

the combination with the best performance in most events.  

 

 

Figure 2.2 Time-step controlled runoff strategy. From left to right, the figure presents a typical 
evolution of the model identifying the correct RC for a certain routing parameter combination. 

 

 

Figure 2.3 Results of the time-step runoff-controlled ODE model applied for an event at the 
USGS station 06600100. 

 

After finding the combinations at the small basins, we interpolate our results to all the links in 

the domain of the model. For this, we use a simple interpolation approach that we called nested 

HUCS (n-HUCS), and a more complex one, Random Forest (RF). We choose two methodologies 

of different complexity levels to be able to contrast the influence of the spatial distribution of the 

patterns. Then, we run the model from 2012 to 2018 and compare the results for all 138 USGS 
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stations with good quality records in Iowa (blue dots at figure 2.1). Finally, we evaluate the 

differences in terms of the KGE index (Gupta et al., 2009), the PFD, and the PTD. 

The n-HUC method is iteratively applied over the HUCS of the region, starting with 

HUCS level 8 (fig. 2.4a) and finishing with HUCS level 2. In each iteration, the method 

calculates the group that has more occurrences inside each HUC (if there is any inside the HUC). 

Then, it assigns 𝜆𝜆1 and 𝑣𝑣0 of the dominant group to the unclassified links of the HUC. With the 

decrease of the HUC level, we make sure that all the links of the domain have a 𝜆𝜆1 and 𝑣𝑣0 value.  

 

 
a) HUCS level 8 

 
b) HUCs level 6 

Figure 2.4 Example of the HUCS used for the interpolation of the parameters 𝜆𝜆1 and  𝑣𝑣0. Left: 
HUCs level 8, right: HUCs level 6. 

 

On the other hand, we applied the RF method, which involves more complexity. RF 

(Kam Ho, 1995) is a method part of the machine learning and data mining family, commonly 

used for supervised learning, clustering, classifications, and regressions. For its operation, RF 

takes decisions based on multiple Decision Trees (DS), each one trained to fit or classify data 

based on several inputs. Both, at the training and prediction, the RF outputs are the modal value 

of the results obtained by each DS. With this approximation, RF avoids overfitting, which is a 

common problem in the machine learning methods (Ali et al., 2012). 
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Each decision tree works by partitioning the data into “branches” or subsets that contain 

similar values (Quinlan, 1986). To achieve its goal, DS uses the “Bagging” training algorithm 

(Breiman, 1994).  The pseudocode of a DS has three steps: 1) Place the best attribute of the data 

set (inputs) as the “root” of the three (squares leveled as I in figure 2.5), 2) Split the training set 

into subsets that become the first level of ramification, and 3) Repeat steps 1 and 2 on each 

subset until “leaf nodes” (green squares in figure 2.5) for all the branches can be found. 

 

 

Figure 2.5 Schematic representation of a random forest that classifies inputs Ii into several 
classes (green squares). 

 

For the setup of our experiment, we use the Random Forest class from the Python 

package Scikit-learn (Pedregosa et al., 2012). After trying several configurations, we use an RF 

with 20 estimators (DS), a max depth of 14 iterations, and a minimum of two samples per leaf. 

The input sample corresponds to nine hydrological features of each link, corresponding to the 

watersheds selected to obtain the combinations of 𝜆𝜆1 and 𝑣𝑣0. The output sample is the obtained 

groups of 𝜆𝜆1 and 𝑣𝑣0 numbered from 1 to 9. To avoid overfitting and biases, we train 400 

different setups of RFs; in each case, we randomly select 70% of the sample for training and 
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30% for testing. We use three functions to evaluate the performance; the mean square error 

(MSE), the mean squared error of the pdf (MSEpdf), and the F1 score index (Sasaki, 2007). The 

MSE (equation (2.1)) accounts for the total number of hits of the RF, and its low value represents 

a good fit of the classification; however, its only use could lead to biases on the results. On the 

other hand, the MSEpdf stands for the mean error obtained by comparing the simulated and 

observed PDFs; we include this function to avoid bias in the selection of the best RFs. Finally, 

the F1 score is a popular accuracy metric used to evaluate classification performance.  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
��𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤��

2
𝑁𝑁

𝑖𝑖−1

 
 

(2.1) 

 

The F1 score uses the harmonic mean to emphasize the lowest value between the 

precision P and the recall R. Both metrics, P and R, are measurements extracted from the 

confusion matrix (error matrix) (figure 2.6). The precision defines how many selected items are 

relevant (equation (2.2)), while the recall says how many relevant items are selected (equation 

(2.3)). F1 is computed using equation (2.4) after P and R, F1 oscillates between 0 (worse model) 

and 1 (perfect model). With the usage of F1 we search for the model that has a high rate of true 

positives (TP) with a low amount of False Negatives (FN).  
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Figure 2.6 Confusion matrix, columns correspond to true and false observations, rows 
correspond to true and false predictions. 

 

𝑃𝑃 = 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃) 

𝑅𝑅 = 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁) 

𝐹𝐹1 = 2 
𝑃𝑃 ∙ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 

(2.2) 

(2.3) 

(2.4) 

 

To perform the interpolation, we select multiple RFs based on the described performance 

functions. We choose the realizations that are inside the first ten optimal surfaces obtained by 

comparing the functions applied to the test data (fig. 2.7a and b). Despite the competition among 

the functions, there is an overlap when we compare the selected realizations (yellow dots in 

figure 2.7) with the selected realizations from the contrary optimums (brown dots). Due to this 

shared behavior, we select all the optimal realizations from both comparisons (74 yellow dots). 

Finally, the interpolated value for each link is the modal value obtained by the selected RFs. 

With the selection of multiple RFs instead of one, we avoid mistakes due to the sample selection 

and obtain a more robust interpolator.  
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a) MSE vs MSEpdf space. 

 
b) F1 vs MSE space. 

Figure 2.7 Selected realizations of RF. Yellow dots stand for the RF realizations inside the first 
10 optimal surfaces (selected RF). Brown dots correspond to the selected RF at the contrary 

space. 

 

Additionally, we analyze the relevance of the input parameters for the RF in function of 

both surfaces (fig. 2.8a and b). In both cases, the slope (So), the HUC-8 category, and the travel 

time (Tt) are among the most relevant parameters. The total area (Ʌ), the total length of channels 

(Lt), and the total number of links (Nt) are in a second group. Finally, the less relevant 

parameters for all the cases are the watershed order, and the HUC-6 level.   

 

 
a) MSE vs MSEpdf 

 
b) F1 vs MSE. 

Figure 2.8 Input parameters relevance obtained by the RFs selected from the comparison of the 
objective functions. 
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2.2 Results and discussion 

We first evaluate the performance of the time-step runoff-controlled ODE hillslope 

model. For this, we compare the simulated and the observed peak flows in the events used to 

obtain the best combinations. In figure 2.9a we present the results obtained using the best 

combination for each event. According to this result, our proposed methodology achieves to 

correctly simulate the peak flow magnitude at most of the events, with differences below the 

20% for 221 cases out of 490. This performance diminishes when we simulate all the events with 

the best combination for the watershed (fig. 2.9b), in this instance, the cases with differences 

below the 20% is 127. However, the overall comparison still shows a good performance for the 

selected 𝜆𝜆1 and 𝑣𝑣0 of each watershed.  

 

 

Figure 2.9 Observed versus simulated peak flows for the training set events. a) Comparison of 
the result of the best 𝜆𝜆1 and 𝑣𝑣0 combination for each event, b) Comparison of the best 

combination by watershed. 

 

Using two different methodologies, we interpolate 𝜆𝜆1 and 𝑣𝑣0 for all the hydrological links 

of Iowa. In both cases, the base links were the ones corresponding to the small watersheds with 
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USGS streamflow records (fig. 2.1). In figure 2.10a and 0.8b we present the maps corresponding 

to the n-HUC and RF methodologies, respectively. Spatial differences arise from the nature of 

both methods, in the n-HUC interpolation (fig. 2.10a), the spatial distribution holds the shape of 

the HUCS depending on the density of previously analyzed watersheds.  On the other hand, the 

RF method shows patterns that involve stream magnitude, localization, and watershed 

characteristics (fig. 2.10b).  

 

 

a) n-HUC interpolation. 

 

b) Random forest interpolation result. 
Figure 2.10 Map result of the 𝜆𝜆1 and 𝑣𝑣0 interpolation obtained by the a) n-HUC method and b) 
by the random forest. Yellow values correspond to 𝜆𝜆1 = 0.2 and 𝑣𝑣𝑜𝑜 = 0.3, green to 𝜆𝜆1 = 0.25 

and 𝑣𝑣𝑜𝑜 = 0.4, and purple to 𝜆𝜆1 = 0.15 and 𝑣𝑣𝑜𝑜 = 0.2.  

 

As mentioned in the methodology, for the RF interpolation, we use the best 74 different 

realizations, and for each link, we select the 𝜆𝜆1-𝑣𝑣0 combination with more occurrences. This method 

involves a discrepancy and confidence among the multiple RFs. The confidence is high when a 

high percentage of them select the same 𝜆𝜆1 and 𝑣𝑣0, we calculate it as the modal value for the link 

divided by the total number of RFs (74). In this case, we obtain a relatively good agreement with 

confidence values oscillating between 0.5 and 0.83 in a vast region of Iowa. Also, the obtained 
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results have a regionalization pattern probably explained by the patterns of some of the input 

data. The uncertainty of the high-order streams is possibly associated with differences in the 

information that the RF method has during training and testing (51 small watersheds) contrasted 

with the information that it uses to predict (all the links). 

After the interpolation, we run the HLM-Toplayer model between the years 2012 and 

2018. The run of the HLM model has three variations, which are the open loop, the n-HUC, and 

the RF. The open-loop variation stands for the model with constant parameters 𝜆𝜆1 and 𝑣𝑣0 equal to 

0.2 and 0.33, respectively. The n-HUC model has the 𝜆𝜆1 and 𝑣𝑣0 distribution corresponding to the 

one presented in figure 2.10a. The RF model, distributed 𝜆𝜆1 and 𝑣𝑣0 with the results shown in 

figure 2.10b. Results show that the KGE performance index is similar between the open-loop and 

the RF model, and it tends to be lower for the n-HUC model (fig. 2.11).    
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Figure 2.11 KGE index distribution. a) Evaluation for 138 USGS links inside Iowa, b) 
evaluation for links with areas between 0.1 and 1000 km2. c) Links with areas between 1000 and 

15000 km2. d) Evaluation for links with areas between 15000 and 35000 km2. 

 

We also compare the performance of the three models to simulate peak flows. Figure 

2.12 presents the comparison between the observed peak-flows (x-axis) and the simulated peak-

flows (y-axis). Additionally, in the figure, we present the interquartile band and the median value 

for different observed intervals. All the models present underestimation for low peak flows. In 

the cases of the open-loop and RF, this behavior tends to change with the increase of the peak 

flow value. The open-loop is the model that most tend to overestimate, while the n-HUC tends to 

underestimate. Moreover, the RF model makes a better approximation of the peak flows. Our 

results still show a significative dispersion potentially explained by uncertainties at 𝜆𝜆1, 𝑣𝑣0, and 

other parameters of the model not explored in the described experiment. 
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Figure 2.12 Scatter plot of observed peak flows vs simulated peak flows. Red lines correspond 
to the percentiles of the simulated peak flows for different observed interval. 

 

The simulated peak flows behavior presented in figure 2.12 also applies at multiple 

scales. According to figure 2.13, the three versions of the model exhibit underestimation for 

watersheds with areas below 1000 km2. Besides, there is a relatively good fit for basins with 

areas between 2000 km2 and 10,000 km2. Finally, for large watersheds (above 10,000 km2), the 

behavior switches to overestimation. The open-loop model is the model with more 

overestimations across scales. On the other hand, the RF model seems to present a good peak 

low performance for scales between 2000 and 10,000 km2. In contrast, the n-HUC has a slight 

underestimation for almost all scales except for watersheds with large areas (above 10,000 km2).  
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Figure 2.13 50th percentile evolution across scales, the black line corresponds to the 
observations, and the blue dots to the observed peak flows. 

 

Finally, we analyze the performance of the model setups in terms of the peak flow 

difference and the time to peak difference (fig. 2.14). The results of the first row, show that the 

time differences tend to decrease for the RF case for the cases with a peak flow magnitude lower 

than 50 𝑚𝑚3 ⋅ 𝑠𝑠−1. For the remaining magnitudes there is no evident differences. Besides, the 

peak flow difference shows a lower difference for magnitudes above 300 𝑚𝑚3 ⋅ 𝑠𝑠−1 in the case of 

the RF. The second row also presents a similar result, the RF case has lower peak flow difference 

for the watersheds with areas above 2600 km2.  
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Figure 2.14 Peak flow difference(x-axis) and time peak difference (y-axis) for the different 
model realizations. The first row, colors the dots in function of the peak flow magnitude. The 

second row, colors the dots in function of the watershed area. 

 

In this chapter we have presented a novel approach to obtain the parameters for a hydrological 

model. The approach starts from data of the region corresponding to small watersheds and ends 

interpolating the results for the model domain. In contrast with a typical calibration procedure, 

our results represent an advance in the case of ungauged basins in a gauged region.  Moreover, 

we show that it is possible to increase the performance of some objective functions without 

affecting the overall performance. However, the method seems to be sensitive to the density of 

the data and the interpolation method. In this case, the random forest methodology has proven to 

be effective for classification and eventually interpolation. In a future work we expect to expand 

this methodology to other regions and include more parameters of the model.  
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Chapter 3 Subsurface flow improvement and tile drainage incorporation 

As a part of the effort to improve the model performance, we also work on the model 

representation of the subsurface and tiles processes. According to several authors (Andrews et 

al., 2011; Klaus & Zehe, 2010; Loritz et al., 2016; Tallaksen, 1995), a significant portion of the 

hydrograph came from subsurface flow. In the USA Mid-West, the subsurface flow has been 

changed by the presence of tile drainage systems (Schilling & Helmers, 2008). Among all the 

implications of the tile drainage (Dinnes et al., 2002; Holden et al., 2019; Li et al., 2010), this 

practice also affects the transport times of water at the subsurface, and eventually the shape of 

the hydrographs (fig. 3.1). However, for us it is important to have a good representation of them 

on the HLM model. Their inclusion will help to improve the model understanding of the process, 

and eventually, its performance. 

 

 

Figure 3.1 Example of a hydrograph (black dots) at West Fork at Cedar River (05458900). To 
contrast this effect, in orange we present the HLM model results.  

 

3.1 Methodology 

We have developed a multi-model methodology to include the subsurface and tiles 

dynamics into HLM. Our methodology includes first the usage of the physical model Hydrus 
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CITAS, and then, the implementation of its results into HLM. In the Hydrus model we simulate 

several setups of virtual hillslopes with tiles and without tiles. Then, we evaluate the results from 

the different hillslopes and obtain a general equation to describe the hillslope output in function 

of its storage. Finally, we include in the HLM model one version of the obtained equation and 

validate the new model for 18 USGS stations at the Cedar River at Bluff (05464780).      

The model Hydrus uses the Van Genuchten equations with hysteresis upon refill. 

Simulations in Hydrus are computed by solving Richard’s equations, a PDE model to describe 

flow through porous media using the finite element method on user-specified elements. Such a 

method can precisely capture the depth and shape of a water table that is variable in space while 

also representing the depth-distribution of water in the unsaturated zone of the subsurface. 

Finally, the outputs of Hydrus include fluxes through different hillslope faces at user-specified 

precision and total subsurface storage with rougher precision. As we develop a corresponding 

ODE model, we consider only the total volume of water, ignoring spatial and depth distribution 

of water concentration. 

The hillslope for our simulations is a 40 × 40-meter square prism with a depth of 4 meters 

(fig. 3.2). The soil type is silty loam with the Hydrus default soil parameters. The top surface of 

our hillslope experiences atmospheric boundary conditions (including potential 

evapotranspiration and infiltration), the bottom of the hillslope allows no water transfer, nor do 

three of the four vertical faces. The final vertical face of the hillslope (the downhill face) 

undergoes the seepage boundary condition, which means the flow through of this face only 

occurs in regions of saturation. The flow out of this face is called subsurface flow.  
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Figure 3.2 Hillslope for Hydrus simulations. For ‘drainage simulations’ (simulations that include 
tiles), two tiles are represented, and they run along the gradient of the hillslope. The leftmost face 

is called the ‘seepage face,’ while all other vertical faces allow no water transfer. The top face 
undergoes atmospheric conditions. 

 

Tiles (when present) are 2.5 cm in diameter, which are centered 1 meter below the top 

surface. In simulations, the tiles also undergo seepage conditions, which is to say that the soil 

surrounding the tiles must be saturated if they are to be actively draining. Because the tiles are 

only a meter below the surface, the soil must be near saturation to ‘activate’ tiles. Although, 

subsurface drainage tiles are typically only included for poorly drained soils, which usually 

implies flat terrain. We have run simulations for hillslopes with gradients between 0% and 10%. 

For higher slopes, the tiles have poor effect over the hillslope outflow, since most of the flow is 

parallel to them and out of the downhill seepage face. 

Each of our simulations represents 1600 days with 400 time-steps reporting seepage and 

storage. Throughout the simulation, the potential evapotranspiration is set to 1.5 𝑚𝑚𝑚𝑚 ⋅ 𝑑𝑑𝑑𝑑𝑦𝑦−1 

(constant). Since the porosity is 0.45, the soil is initially nearly saturated (uniformly distributed 

soil water content of 0.43) and allowed to drain as subsurface flow. When soil is not saturated, 

this is not a realistic representation of a soil moisture profile, so we require that these drainage 

simulations be over a long enough time period that the soil can achieve a reasonable soil 
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moisture profile as it drains. The hillslope begins nearly saturated, but drains without rainfall for 

100 days, priming the hillslope for the first precipitation event by distributing subsurface water 

into a more realistic profile. During days 100-131, an infiltration pattern based on rainfall from 

July 1993 is applied. The soil drains, and the same infiltration pattern is applied again beginning 

on days 300 and 500.  

From the results of the Hydrus model we obtain a generic formulation for the outflow 

subsurface flow in function of the stored water. For this, we first record the results of Hydrus 

after the 500th time-step. At this point, we record the mean value of the stored water in the 

hillslope, and the total outflow. Then, we compare the outflow in function of the storage, and 

graphically compare the results for the multiple setups of the hillslope. Since the curves belong 

to setups with different slopes, soil depth, and tiles no tiles, they represent curves that oscillate in 

different ranges, but that show similar behavior. Knowing this, we collapse the curves of each 

case by standardizing the x and y-axis.   

This collapsed curve is mainly defined by three parameters, the no outflow storage 𝑀𝑀0, the 

activation storage 𝑀𝑀𝑛𝑛, and its exponential parameter 𝑏𝑏. Before 𝑀𝑀𝑛𝑛, the relationship between the 

outflow and the storage is linear, after it, it behaves like an exponential equation. The last step of 

the methodology consists in obtaining an approximation to those three parameters. The 

difference between 𝑀𝑀𝑛𝑛 and 𝑀𝑀0 (Δ𝑀𝑀) is the total active water in the hillslopes of the watershed. We 

obtain this value from measurements of GRACE (Landerer & Swenson, 2012). For this, we took 

the GRACE records over the last 12 years (fig. 3.3) and estimate the total active water as the 

difference between the minimum and maximum record. As a result, we estimate Δ𝑀𝑀 to be equal 

to 0.248m, we use this value for the HLM model setup, and to find the observed slope for the 

linear portion of the outflow.  
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Figure 3.3 GRACE mean anomalies of water stored in the region of Iowa. 

 

To find the linear outflow range, we use the obtained Δ𝑀𝑀, and the streamflow records of 

the USGS stations of the region. Here, we assumed that after a hydrograph event, all the 

streamflow water is near the activation point 𝑀𝑀𝑛𝑛, and that the minimum observed record is near 

𝑀𝑀0. With these assumptions, we extract a time series of the minimum values observed each 4 to 8 

weeks. The delta streamflow Δ𝑞𝑞 will be the difference between the maximum value from the 

series of minimum (max
𝑡𝑡
𝑞𝑞𝑚𝑚𝑖𝑖𝑛𝑛), and the minimum from the minimum (min

𝑡𝑡
𝑞𝑞𝑚𝑚𝑖𝑖𝑛𝑛), as presented at 

equation (3.1). Then, we estimate the outflow rate 𝐾𝐾3 by using equation (3.2). Finally, the value 

implemented in the model is n exponential equation that follows the mean value of the obtained 

slope for the low flows. 

 

Δ𝑞𝑞 =  max
𝑡𝑡
𝑞𝑞𝑚𝑚𝑖𝑖𝑛𝑛 −  min

𝑡𝑡
𝑞𝑞𝑚𝑚𝑖𝑖𝑛𝑛  

𝐾𝐾3 = ∆𝑞𝑞
∆𝑆𝑆 ∙ 𝐴𝐴

  

(3.1) 

(3.2) 

 

The original setup of the HLM model follows a linear formulation for the subsurface 

outflow.  In the new version, we change this for an exponential formulation (eqn. (3.3). This 
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formulation follows the adjustment for the tiled cases obtained by Hydrus, and for its 

implementation we seek a curve that follows the parameters obtained at equations (3.1 and (3.2.   

 

𝑞𝑞𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑀𝑀𝑠𝑠𝑒𝑒𝑏𝑏𝑆𝑆𝑠𝑠  (3.3)
 

3.2 Results 

We have different setups for the Hydrus model, each setup includes differences in the 

hillslope depth, slope, and presence of tiles. In figure 3.4 we present a graphical example of the 

states at two hillslopes, with tiles and without tiles. From each setup, we obtain the relation 

between the storage and the outflow (fig. 3.5a). Moreover, considering all the cases we obtain a 

collection of collapsed curves (fig. 3.5b) that show a similar behavior for conditions under the 

activation point. 

 

 

Figure 3.4 Graphical example of the results obtained by Hydrus at a tiled hillslope (left column) 
and a no tiled hillslope (right column). From top to bottom each row represent a snapshot of the 

water stored in the model at increasing time intervals. 
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a) Outflow for hillslopes with different 
depths. 

 

b) Collapsed case of the results obtained 
at different hillslopes setups. 

Figure 3.5 Outflow in function of the storage obtained by Hydrus. (a) Results of three hillslopes 
with different depths and tiles/no tile case. (b) Collapsed cases standardizing by the activation 

point and the activation streamflow.  

 

From the collapsed curve we obtain a general shape of the curve and implemented it into 

the HLM model. For this case, we run the modified HLM model at the Cedar River watershed at 

Bluff (fig. 3.6a).  Cedar River is a watershed that has streamflow records affected by tiles, and 

also has regions with no tiles (fig. 3.6b). Besides, the watershed has multiple observation sites 

with good quality records.  
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a) Localization of the Cedar River watershed at Bluff. 

 

b) Soils description of the 
watershed, and tiled region. 

Figure 3.6 Localization of the Cedar River watershed at Bluff (a).  And soils and tiles 
description of the watershed (b). 

 

To test the HLM-Tiles model we run it with Stage 4 rainfall from 2012 to 2018. To setup 

the model we use the river network that IFC uses for the operational model, and for the 

parameters of the model we use the results obtained by Hydrus. In figure 3.7b we present the 

mean KGE performance of the model compared with the Toplayer model (fig. 3.7a). According 

to the figure, with this new setup we achieve to increase the overall performance of the model for 

the watershed of Cedar River at Bluff. However, there are still streamflow stations at which the 

model fails to obtain a good representation. 
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a) HLM-Toplayer model performance  

 

b) HLM-Tiles model performance 
Figure 3.7 HLM model KGE performance considering the original setup (a) and the tiles 

modification (b). 

 

In addition to the performance, we present the simulated streamflow of both models for 

several stations in figure 3.8. According to the results, the HLM-Tile model achieves to obtain a 

better representation of the baseflow and the recession curve for almost all cases. The 

improvement is more evident in the case of the Winnebago River (05459500), which is a highly 

tailed watershed. In this case, the model achieves an overall good representation. Besides, the 

improvement improves not only the recession, but also the ascending limb of the hydrograph. 

However, there are regions in which the tiles assumption tends to make the model overestimate 

the recession curve (054620000).  
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Figure 3.8 Model results at different USGS stations inside the Cedar River watershed at Bluff. 

 

Our results show that the HLM model could be effectively improved by a non-linear 

representation of the subsurface flow at the hillslopes. Considering the differences between land 

uses, soil types, and the presence of tiles, this new approach potentially could be extended to 

large regions. In this case, we assume a tiled representation for all the domain for the case of the 
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Cedar River at Bluff. With this assumption we achieve to obtain a good representation of the 

events at some stations, however, there are places with overestimation of the recession.  
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Chapter 4 Downstream data assimilation. 

Streamflow data was forced into HLM by altering the initial conditions of the ordinary 

differential equation representing the flux in the channel. The state that represents the flux in the 

channel is initialized with observed values. The change in the initial conditions only takes place 

on those links where a streamflow gage is located every time new observations are available. The 

channels upstream of the assimilation point do not get affected. The channels downstream of the 

gages with observed data get affected because assimilated data is routed downstream with HLM.  

 

 

Figure 4.1 Results of the data assimilation at Clarksville. Open loop results (red), data 
assimilation (blue), observations (black). 

 

In figure 4.1 we present the result for this strategy at the Clarksville station (fig. 4.2). 

According to the results the strategy improves the model performance, since it transits 

downstream the amount of water observed upstream. However, the strategy still has some 

limitations. Its performance depends on the distance of the upstream record. Besides, the 

methodology could only be applied to regions with records upstream, and the improvement 
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window is limited to the transit time of each watershed. On the other hand, this strategy has 

proven to be useful improving the performance of the model at regions with a good density of 

stations.  

 

 

Figure 4.2 Map showing the stations of the assimilation experiment. 
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Chapter 5 Implementation of a comprehensive evaluation system  

We developed a non-proprietary open-source software (NPOSS) that allows users to 

visualize and analyze multivariate space-time hydrologic data. Hydro-NPOSS leverages the 

concept of three-dimensional data cubes which allows users to query data in space, time, and 

variable dimension(s). We implement this concept without requirement of a database system. 

Thereby, users can define data sources from local file systems and or external data sources (e.g. 

online data services). This capability makes NPOSS a flexible and portable solution where users 

can publish their hydrologic datasets in Open Data journals or as companions to their 

publications. We present example use cases including hydrologic model visualization and 

evaluation in hindcast and forecast modes for this project. 

5.1 Methodology 

Hydro-NPOSS consists of three main components: Modules, Configuration, and 

Graphical User Interface (GUI).  Modules are defined as internal libraries and external web tools 

and technologies. Internal libraries, designed for independent tasks, include functions responsible 

of extension and orchestration of embedded tools. These tasks are data acquisition, visualization, 

and user interactions with GUI. External tools/libraries are the open-source web tools that 

Hydro-NPOSS leverages them. Table 1 summarizes the usage and reference for external libraries 

used. 
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Table 5.1 External software used by Hydro-NPOSS 
JS LIBRARY USAGE IN HYDRO-NPOSS REFERENCE 

Leaflet.js Map and spatial visualizations https://github.com/Leaflet/Leaflet 

Plotly.js Time-series visualization https://github.com/plotly/plotly.js 

   

Jquery.js Creating forms https://github.com/jquery/jquery 

 
Data acquisition 

D3.js Data acquisition https://github.com/d3/d3 

Papaparse.Js Data acquisition https://github.com/mholt/PapaParse 
   

Jszip.js Uzipping data https://github.com/Stuk/jszip 

Moment.Js Date and Time format 
 

   

Math.js Mathematical operations https://github.com/josdejong/mathjs 

Numeric.js Numerical analysis https://github.com/sloisel/numeric 

   

Togeojson.js Spatial data conversion https://github.com/tmcw/togeojson 

 

Configuration is a set of information about data sources, metadata, control elements in 

GUI, and styling of the visualizations. To decrease the effort in deployment, we have created an 

interactive configuration step in which the user provides the required information using reactive 

web forms. This information is stored in the configuration file that could be reused by the user 

without repeating the configuration step. The GUI consists of a map, a visualization canvas for 

time series, and control elements that are responsible for navigating data. The workflow of 

https://github.com/Leaflet/Leaflet
https://github.com/plotly/plotly.js
https://github.com/jquery/jquery
https://github.com/Stuk/jszip
https://github.com/josdejong/mathjs
https://github.com/sloisel/numeric
https://github.com/tmcw/togeojson
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Hydro-NPOSS is shown in figure 5.1. The elements with white and gray background correspond 

to pre-deployment and post-deployment stages, respectively. 

 

 

Figure 5.1 Schematic of Hydro-NPOSS workflow. 

 

In the post-deployment step, user interactions are passed to modules by control elements 

in GUI. Thereafter, modules use configuration information to access data. This step is handled 

by a Dynamic Path Creator (DPC) as a module that dynamically creates the path to requested 

data source using the event that corresponds to specific location in the data or element of the data 

cube. Hydro-NPOSS adopts the concept of data cubes as its data model. Initially, data cubes are 

introduced by Gray et al. (1997) for reducing the dimensions of the data based on the query that 

the user requests. Maidment (2002) introduced space-time-variable cube for referencing the 

individual data to corresponding attributes. Further, Goodall et al. (2008) implemented this 

concept in integrating time series from different sources for National Water Information System 

(NWIS).  

5.2 Results 

We have uploaded the results from Chapter 2 into an implementation of the Hydro-

NPOSS software. Figure 5.2 presents a graphical deploy of Hydro-NPOSS showing the KGE.  
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Figure 5.2 Hydro-NPOSS deploying the results obtained with the HLM-Random forest 
implementation presented at Chapter 2. 

 

The platform also lets the user include different performance indexes and properties of 

the stations. In this sense, it allows a fast comparison between models and observed data. Figure 

5.3 presents the results obtained with the HLM model in Chapter 2 for a watershed inside the 

area of analysis. 

Here is a link to the described web platform; in it we have uploaded the simulation results 

described in Chapter 2. 

http://s-iihr55.iihr.uiowa.edu/hygis.html?config=http://s-iihr51.iihr.uiowa.edu/hydro-

analytics.net/evp_experiment/evp.config 

http://s-iihr55.iihr.uiowa.edu/hygis.html?config=http://s-iihr51.iihr.uiowa.edu/hydro-analytics.net/evp_experiment/evp.config
http://s-iihr55.iihr.uiowa.edu/hygis.html?config=http://s-iihr51.iihr.uiowa.edu/hydro-analytics.net/evp_experiment/evp.config
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Figure 5.3 Results of the HLM model for the USGS station 05481000. The results belong to the 
HLM setups described as the open-loop, random forest and n-HUCS at Chapter 2. 
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Chapter 6 Conclusions 

 An important aspect in providing a safe, efficient, and effective transportation system is 

anticipating natural hazards that can lead to road closures. Extreme floods can lead to bridge 

overtopping and/or compromising the structural integrity of river overpasses, including box 

culverts. The flood forecasting model and information system proposed here provides a tool to 

anticipate potential hazardous situations related to floods. It would allow time for the activation 

of action plans to minimize the impact on the overall transportation system.  The forecasting 

model can be used in real time to anticipate floods and to look at past flooding scenarios to 

determine if all the actions taken were appropriate or can be improved. Our forecasting system 

will contribute to improving safety and minimizing risk associated with increasing multi-modal 

freight movements on the U.S. surface transportation system by enhancing safety and providing 

warning of potential road closures. 

 As part of this project, we have provided a prototype forecasting web platform with four 

specific innovations. 1) Forecasts at critical river/road intersections, 2) Spatial animated maps of 

flood evolution into the future, and 3) a measure of forecast accuracy at the newly incorporated 

forecast bridges. Our developments give us confidence that we can continue moving forward in 

developing a forecasting system that is transferable to other locations in the Midwest. As floods 

continue to be the most costly disaster in the nation, it becomes critical that tools are develop to 

better predict them. 
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